DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
Final Year Research Project 2009, Final Report

Project Title: Record, Mix, Play, Share: A web-
based collaborative music creation

environment
Project Number: 103
Supervisor: Assoc.Prof. Gillian Dobbie
Second Examiner: | Assoc.Prof. John Morris
Author: Danver J. Braganza
UID: 4316790

Project Partner: Joseph Hobbs
Date Submitted: Monday, 14th September 2009

Declaration of Originality
This report is my own unaided work and was not copied from nor written in
collaboration with any other person.
Signed: [Danver J. Braganza]

Record, Mix, Play, Share: A Browser-based Collaborative Music Composition
Environment

Danver J. Braganza

Department of Electrical and Computer Engineering
University of Auckland, Auckland, New Zealand

dbra072@aucklanduni.ac.nz

Abstract

This report details the final year project on which I worked.
The aim of this project was to develop a web application, Mixa,
which would support collaborative music composition.

Music composition is a creative activity that could benefit
from a collaborative approach. Similar websites and applica-
tions that attempt to deliver collaborative composition exist, but
have a number of differences in their goals and implementa-
tions.

The key features that were successfully implemented by
Mixa are client-side audio capture, browser-based composition
and version control of songs. Other features include support for
sharing, streaming audio online and tagging clips.

As Mixa is a web application, the implementation is sub-
ject to constraints and required the integration of a number of
technologies. Due to the limitations of the project with respect
to time, an extensive evaluation not possible. A usability evalu-
ation was performed upon the composer module of the system.
Response to the evaluation was strongly positive.

The prototype that was created by the conclusion of the
project is judged to be functional and fulfil most of the require-
ments that were set. Due to the ambitious nature of the project,
there is a large body of potential work to be addressed.

1. Introduction

The final year of the Software Engineering Degree at the Uni-
versity of Auckland requires the completion of a research and
implementation project that lasts the entire academic year. This
report details my project, which is centred on the development
of a web application that provides support for co-operative mu-
sic composition between its users. This application has been
named "Mixa’.

1.1. Project Aims

The aim of this project was to create a prototype web applica-
tion (Mixa), which would enable musicians and other interested
users to co-operate in the composition of music. This applica-
tion would support the recording, mixing and playing of music.
In addition, it would possess features that support the formation
of online communities, and promote co-operation and sharing
between their members. It is expected that this will improve
the quality of music produced as well as providing an enjoyable
experience composing and listening to music.

The key innovative feature of this application was to pre-
serve the inner representation of music to store the songs in a
way which can be modified. Storing an unflattened represen-
tation of the data enables this application to support editing or

re-sequencing of a song. Another key innovation that this appli-
cation would offer is the ability to record music from the stan-
dard audio input devices on a client machine within the browser
itself. Recording would take place without requiring the user to
download or manually install a platform-specific application or
a browser-specific plug-in.

The music created in Mixa should be available in a variety
of formats to support the ability for the music to be played a
variety of portable devices which do not support codec installa-
tion.

Some of the more ambitious goals of this project, such as
the creation of a collaborating community of musicians, were
not achievable within the time frame that was afforded, but are
instead suggestive of a long-term approach. One of the aims,
therefore, was for the prototype application to demonstrate the
potential of collaborative composition on a small scale.

Once this proof of the feasibility of Mixa was available, the
application could be re-engineered to scale, extended and im-
proved. For this reason it was also important that Mixa be im-
plemented in a way that is extensible and supportive of change.

1.2. Overview

The rest of this report aims to provide a comprehensive under-
standing of what was accomplished during the project.

The following section will detail the background to this
project, especially focusing on the motivations and work in re-
lated areas. Certain similar applications are highlighted and
contrasted with Mixa.

The next section will detail the features which were imple-
mented within Mixa. These features are further subdivided into
user functions, administrative functions, and non-functional re-
quirements.

The next section will deal with the details of implemen-
tation. This section will begin with an overview of the entire
architecture, and then examine each interesting component in
turn. A broad level of detail will be aimed for, and this section
should be considered introductory to, and not replacement for,
proper documentation to the application.

The next section will concern itself with a discussion about
evaluation, and certain limitations of this project will be exam-
ined. This section also contains the summary of a usability eval-
uation which was conducted on one of the modules of Mixa.

The final two sections of this report are the conclusion and
the future work.

2. Background and related work

Since the invention of the World Wide Web in 1989, user adop-
tion has been swift. Currently, there are an estimated 1.5 bil-

lion users on the Internet, and this number is growing daily.
By 2012, it is expected that 1.9 billion people, or 30% of the
world’s population, will have access to the World Wide Web.[1]

2.1. Rich Internet applications

Since its inception, the technologies underlying the World Wide
Web have been improving. One trend that can be observed is the
increase in the interactivity of Web pages.

JavaScript, also called ECMAScript, enables client-side in-
teractivity over the World Wide Web. Web page developers are
now able to easily write mobile code that runs on the client
machine. An advantage of this code running locally is that
there is increased liveness as the interface does not have spend
time in communication with the server. The improved response
times afford the creation of more interactive interfaces. Java ap-
plets, and true rich media plug-ins such as Adobe®Flash and
Microsoft®Silverlight are now popular platforms for creating
rich interactive user interfaces.

The web as a platform has a number of key character-
istics that make it attractive for developing applications on.
Web applications are distributed, easy-to-access, easily sepa-
rable/loosely coupled, platform independent, and installation-
free.[2]

The growing multimedia capability on the browser was ac-
companied by another trend developing in server-side technolo-
gies. Servers had already grown more dynamic in their ability
to handle user requests and respond to them. Instead of deliv-
ering a static web page from a repository, web servers began
to service HTTP requests by generating web pages using CGI
(Common Gateway Interface) scripts.

Using AJAX (Asynchronous Java and XML (eXtensible
Markup Language)), developers were able to establish commu-
nication between the client machine and the server without the
user having to refresh an entire page. This took web applica-
tions further away from the submit-response style of interaction
that had existed before, and closer to web pages that behaved
more like desktop applications. [2]

The integration of media delivery with asynchronous com-
munication protocols has lead to the development of the rich
Internet application. [3]

It is predicted that soon Web interaction will be on par with
desktop applications.

2.2. User-created content

Alongside the development of the Rich Internet Application, the
web had experienced a large paradigm shift in the underlying
content creation model. The focus began to move away from
provider-centred data, and towards a more user-centric model.

Another hallmark in what is now called the Web 2.0 rev-
olution was the shift in the source of content, from developer
to user. There was an explosion of user-created content caused
by open authoring and revising which eroded the distinction be-
tween authors and readers.[4] Users have a far richer experi-
ence when they collaborate than when they react passively in
isolation, as the generation, evaluation and validation of ideas
is self-reinforcing.

User-created content is now a large driver of Web usage.
Users are more sensitive to their own requirements than the de-
velopers. When the user’s needs did not coincide with the for-
mat of the data provided by the developer, the loose coupling
between service providers and the open network facilitates users
manipulating information themselves to improve it.

Once information has been created, there are three identi-
fied ways that Web 2.0 supports the management of informa-
tion. These three ways are aggregation, projection and cross-
production, and together they can be called the Web 2.0 in-
formation management model. Web content combined is more
than the sum of its parts. [5]

2.3. Music

The commercial music that is readily available today is gener-
ally produced to be consumed. The format in which it is pro-
duced is inflexible. The listeners of this music do not interact
with it creatively. The inflexible format does not encourage the
creative efforts of the listeners.

After listening to a song track an a Web site today, a user
may be prompted to review, rate or tag the musical piece. The
user may even be able to email the artists, and get in touch with
them through a social networking site. However, the music it-
self is not easily available for manipulation. The music is not
provided in a format that readily allows for modification with-
out special knowledge and technology. The user in unable to
explore the music.

In contrast, this project relies on the conception of mal-
leable music: music which is provided in a format which is
readily manipulated. Such music would let listeners transcend
their roles as passive listeners and encourage them to creatively
interact with the pieces they listened to. [6] Such music would
enable listeners to study the it, to modify it to suit their own
personal tastes, and would let them reuse components of the
compositions in their own music.

Music composition is a creative activity that could benefit
from a collaborative approach, but there is no popular collabo-
rative composing tool with widespread adoption. The perceived
lack of collaborative tools for music composition is what moti-
vated this project.

2.4. Related work

There have been a number of similar applications that have at-
tempted to approach the same problem domain as Mixa.

2.4.1. The Audiotool by Hobnox

The Audiotool is designed to enable users to create their own
electronic music within their own browser.[7].

The Audiotool is built in Flash, and has a slick and attrac-
tive interface. Learning to use the Audiotool is easy, and creat-
ing music with it is entertaining. The ability to perform sound
synthesis within Flash is extremely impressive.

However, the Audiotool does not allow for complete cre-
ative freedom in music generation. It is limited to only one
genre of music and there is no way to record new sound clips
and import them into projects.

There is no support for collaborative composing, or for
sharing partially completed projects, although fully rendered
sound files can be saved to the user’s on-line directory.

While the Audiotool has is similar to Mixa, its intended
purpose is quite different.

2.5. Myna by Aviary

Aviary is a company that aims to make creation of digital con-
tent accessible to artists of all genres.[8] Their website intends
to provide a suite of tools on-line through the browser that will
achieve this aim.

Mixa Recorder

save

[mixa quantonz com

Projects | Clips | Users 'Logout 'Share' Playlist

Figure 1: The recording module

Although the Myna sound editing tool is still in its pre-alpha
phase, the other tools from Aviary are extremely well designed
to a high standard. The Aviary user interfaces were built in
Flash, and are all very attractive.

Without knowing the specifications of Myna, it is impos-
sible to tell exactly how similar Myna is to Mixa. It is likely
that Myna too will support recording of music from the client’s
hardware, when it is completed.

The key difference between Myna and Mixa will be the col-
laborative support built into Mixa.

2.6. F@ust Music On-line

FMOL is a system for real-time music collaboration on the Web,
that allows several composers to work collectively on a single
piece using a common interface.[9]

FMOL was an advanced on-line music creation system that
was developed in the Pompeu Fabra University in Spain. Just
like the other two applications, it was a thin client that ran in
a browser with a plug-in. Users composed music by selecting
fom an array of switches. FMOL was an academic project that
had a lot of work go into it, and it had some extremely attractive
features.

One such feature was user profiling, where it would at-
tempt to match users with certain composing styles with co-
composers they would like. The initial version of FMOL did
not have a full-duplex ’jam’ capability, but it was eventually
added.

It is exciting to see that FMOL was successful, and the suc-
cess of FMOL validates some of the ideas from Mixa.

One key area where FMOL differs from Mixa is the lack
of recording in FMOL. Also, the FMOL was a self-contained
project, and did not support the interchange of information with
other applications.

3. Features
3.1. User functionality

The primary driver of this project was user functionality. The
features described below were prioritized and chosen for imple-
mentation by the way in which they supported the aims of the
project.

3.1.1. Recording

Mixa allows users to directly capture audio from the recording
devices they have available on their client machine. Recorded
clips are uploaded to the server machine, where they are stored

Projects | Clips | Users 'Logout ‘Share Playlist

Figure 2: The composer module in use

persistently.

There is currently no support for deleting uploaded clips as
this would have cascade effects on the musical projects the clips
were a part of.

3.1.2. Composing

Mixa provides a basic song sequencing interface where songs
can be composed from a list of music clips. The composer
module (see figure 2) is the interface where users can customise
existing songs and create new ones.

The composer provides users with a view of the "Library’,
(the lower-right hand panel in figure 2) where they can browse
a selection of all clips in the database. At present this has been
implemented by a list, which is sufficient as long as the number
of clips remains below 30. Directly above the library is the
’Palette’, which shows all those clips that have currently been
downloaded locally for use in the song. Clips can be added to
the *Canvas’ by dragging and dropping. The canvas represents
a song stored in something like piano-roll notation.

The composer module is expected to be the region where
most of the user’s work would take place. For this reason it
was a requirement that this module be attractive, intuitive and
efficient.

3.1.3. Version control

Mixa allows users to modify the songs that others have created.
This means that a form of version control is required, so that
users are not inconvenienced by losing their music. The form
of version control implemented in Mixa relies on duplicating
the resource when it is accessed by another user. This allows
the application to ensure that both the original creator and the
new editor have full freedom to interact with the music.

Collaboration is encouraged by informing the original artist
that her work has been duplicated by someone else. To load all
the changes the other composer has made, all she needs to do
is load the new version, at which point she will end up with a
duplicated copy that contains her original work in addition to
the changes that were made by the other composer.

3.2. Rendered playback

Mixa stores the songs users create in a relational database, and
represents them with a specialised format. This format is ap-
propriate for communicating with the composer application, but
is not supported by external applications or hardware devices.
For this reason Mixa supports the rendering of song versions to
widely supported fast-playback formats.

Rendering to a high-compression format is also ideal for

marks Tools Help [CRA raptors

el http://mixa.quantonz.com/admin/

x

¢ Django administration

Site administration

T

Sep 14, 10

Mon

i}

B

Figure 3: The Django admin panel

supporting streaming audio. For this purpose, lossy audio is
considered appropriate. In contrast, when composing full qual-
ity audio is delivered, as the quality might impact the composi-
tion process negatively.

3.3. Sharing

Mixa makes it easy to announce details about a song project on
any social bookmarking site that features sharing of URLs. It
achieves this by assigning each instance within its data model
a unique permanent URL which then can be used by anyone,
anywhere, to refer to that object. To facilitate the easy sharing
of resources, Mixa features a set of links available on every page
which automatically submit the current resource to one out of a
selection of social bookmarking sites when a user requests it.
Mixa also provides the support for Web feeds, to enable
other users to register for updates from a single source. Web
feeds are a simple pull-type notification system whereby an ap-
plication known as an aggregator is configured to periodically
check a given URL for updates published in a particular format.

3.4. Administrative features

By leveraging the features provided by the component systems
of the application, it was possible to provide several adminis-
trative features without having to develop them. This was espe-
cially beneficial as the requirements of the administrative inter-
face to Mixa was the least specified. The Django admin panel
(see figure 3)is an example of a administrative feature which
came with a component system.

When the system needed to perform tasks that were outside
the capabilities of the included admin interfaces, administrators
had to resort to writing and running script files, and editing con-
figuration files by hand. This procedure would be prone to error,
and for this reason an administrative control panel just for Mixa
would be a nice addition.

3.5. Non-functional

Due to the project’s limited scope, most non-functional require-
ments of the application were extremely relaxed. Requirements
such as security, scalability and performance were not consid-
ered for this prototype.

3.5.1. Modifiability

Mixa was developed using agile development practices. This
required frequent changes of the code during iterations. In ad-
dition, the ultimate quality of Mixa is likely to be limited by the

[) Control > B

Data rowser

Model >
Data
Web Layout
Server Data

Audio
Data

native
sound
capture

Figure 4: Architecture of Mixa—Focus: Client

Object- - F —
© Relational Django Request
. Mapping

Relational ' e

Database H . Response
. I

Web
O H Audio data Server
File System “
WAV, FLAC, OGG >
—

Figure 5: Architecture of Mixa—Focus: Server

time constraints of this project. For these reasons, the modifia-
bility of the project is extremely important.

Although no formal procedures were put into place to en-
sure the extensibility of the application, aggressive refactorisa-
tion, good coding practices in general and steady adherence to
the DRY (Don’t Repeat Yourself) Principle ensured that the sys-
tem has a high degree of modifiability.

3.5.2. Buildability

Buildability was a large concern during the implementation of
this project. It was a criterion that any designs generated were
evaluated against quite stringently. It is very important that care
is taken to work within the limitations of this project limitations.
Any effort spent implementing a feature which eventually turns
out to have a low buildability is as good as wasted.

4. Architecture and Implementation Details

As Mixa is a Web application, the implementation is subject to
a several constraints and requires the integration of a number of
technologies

The overall architecture of Mixa follows the standard
client—server pattern of a Web Application. Mixa is deployed
using a three-tier architecture. Presentation is handled by the
browser running on the client machine, which communicates to
the main Web server via HTTP requests (see figure 4). Presen-
tation was achieved by a combination of HTML 5, JavaScript,
Java and Flash. The business logic is handled on the main server
in the middle tier. The last tier is used for persistence, which
includes a relational database management system and the file
system of the computer (see figure 5).

Due to budget constraints, the persistence layer and the
business logic were housed on the same machine. This was
beneficial when considering testability and ease of deployment.

4.1. Client
4.1.1. Flash

The interface to Mixa’s composer module was implemented
in Flash due to its superior graphics capability and user-
friendliness. The Flex framework was used to support the de-
velopment of this module. Flex enables the specification of a
user interface in a declarative language based on XML. The in-
terface is then scripted using JavaScript to add interactivity and
business logic.

This is a much more attractive proposition in terms of build-
ability than the alternative: building the module in Java using
the Swing windowing toolkit.

4.1.2. Java Applet

Mixa is designed to gain access to the recording devices on the
client machine using a signed Java applet with sufficient per-
mission. The reason an applet is needed is because browsers do
not yet support native audio capture, and the restrictive sandbox
within which Flash programs run does not allow for the user to
access the raw audio data.

After recording, the applet uploads the audio to the server
via a HTTP POST request.

4.1.3. Display

The main display was rendered using HTML 5. HTML 5 is the
proposed next standard of the Internet, which is already being
supported by some browsers. It has support for an array of new
semantic tags and a looser more relaxed syntax which enables
it to be more likely to be validated

Most data delivered from the server was sent across in eX-
tensible Markup Language (XML) format. This was the unfor-
matted data representing the resource the client requested. The
browser used eXtensible Stylesheet Language Transformations
(XSLT) to process the data and convert it into HTML 5.

One of the advantages of this arrangement is the decoupling
between the client and the server. Because the server delivers
a standard unformatted data representation in response to a re-
quest, the behaviour of the client is more customisable and the
behaviour of the server supports other clients.

4.1.4. JQuery

JQuery is a JavaScript library which implements commonly-
used functions to enable the rapid development of rich Internet
applications. [10] Of special importance for this project was the
ability to easily code animating divisions, which JQuery sim-
plifies. The inbuilt support for Asynchronous browser requests
also was handy for rendering and displaying XML quickly.

4.2. Web Server and Scripting

Apache Web Server was chosen as the Web server because of
familiarity with the system, and because it was known to work
with Django. Another point in its favour is the fact that it is free,
and well supported through online forums.

Python was the language of choice in which to implement
the back-end. Python is a high-level, dynamically typed object-
oriented language with support for some functional program-
ming constructs.[11]. The main reason for this is because it was
felt it would be good to learn Python before graduation, and
learning is achieved best by doing.

Another reason for Python was that it allows for rapid, ag-
ile development. As an object-oriented language with dynamic

typing Python supports the rapid mock-up of applications. The
quality and amount of auxiliary tools for developing a web ap-
plication with Python were very appealing too.

Django is a web framework implemented in Python that en-
courages rapid development and clean design. One of the core
tenets of the Django framework is that it is delivered with ’Bat-
teries Included.” This means that the most often-used features
that designers of web applications want are included out of the
box. [12]

This included features such as the administration panel,
user authentication and session management. Django also pro-
vides support for template-based generation of web pages. to
ensure that separation of content from presentation is consis-
tently upheld.

Django provides an object-relational mapping to simplify
the database accesses on the server. This allows the persistence
layer to be largely transparent during design and development.
The data model could be specified solely in object-oriented
Python code, and the Data Access Layer would be generated
automatically. This hugely freed up development time, and re-
duced the potential for error.

Another key feature of the Django framework is the decom-
position of a web service into several loosely-coupled *apps’.
An Django app is composed of a set of models, a set of views
which represent and manipulate those models, and a binding
between URLs and views. This pattern of designing web ap-
plications is loosely based on the model-view-controller design
pattern, and it greatly increase the understandability of the sys-
tem.

Following the Django style, Mixa was decomposed into
the following apps: main, users, projects, tagging. The main
app was concerned with delivering to the client the JavaScript,
XSLT and HTML pages required for the effective rendering of
the content, which was supplied via the other apps. Users is a
placeholder app which was installed in case any special user-
centric data needed to be stored that did not belong in any other
app. Projects is the most important app for Mixa, and con-
tains within it all the models needed to support composition
and version control. Tagging is an app which was installed from
Google Code. It provides support for organising and retrieving
models in other apps according to the tags which users associate
with them.

A virtual host was set up to serve media files from a sepa-
rate address to the main application URLs. Media files are files
such as images, audio and Cascading Style Sheets (CSS), which
do not need to go through Django to be delivered. Separating
the two is good practice for reasons of security. Serving media
files from the same name host as the applications introduces the
possibility of name collisions between the URL of media files
and application URLs.

PyAMF was used to implement the handling of Action Mes-
sage Format(AMF) messages on the server. The Adobe®Flash
Player uses AMF to communicate between a client and a re-
mote server. The desirable feature of AMF is that it enables
remote procedural calls to be invoked over a HTTP connection.
PyAMF was used because it sped up the development of a com-
munication channel between the server and Flash. The alterna-
tive solution would be to implement the communication chan-
nel by exchanging messages in an XML format. This solution
would have the advantage of being consistent with the rest of
the interface, but would take effort to implement whereas using
AMF is a much simpler solution.

e
")
J
Author

-

Figure 6: Detail of the version control model in Mixa

4.3. Data storage and representation

Django’s Object-Relational Mapping was used to interface with
an instance of MySQL server running on the same machine. All
of the data corresponding to Mixa was stored in the database in
this way, except for audio data. The audio data, in the form
of binary files, was stored in the file system instead. Some
challenges faced with the arrangement of the Object Relational
Mapping were caused by the database becoming inconsistent
with the model whenever the model changed.

4.3.1. Projects and Versions

The fundamental compositional unit in Mixa is the song Ver-
sion (see figure 6). A Version consists of a collection of audio
clips and associated start times, and represents a single snap-
shot of a song. At present, Versions are only allowed to have
one composer.

Upon the receipt of a request to edit a Version of a song, a
user is provided with their own copy of it. This ensures that both
the original creator and the new composer have complete free-
dom of access to their own Version. To incorporate the changes
made by another user, the original creator has to request the
edited song version. The changes are then available in a new
copy.

For ease of browsing, all the Versions of a song are grouped
together into a Project, and are arranged into a natural tree struc-
ture, with derived Versions being assigned as child nodes to the
Versions they derived from. In figure 7 such a tree structure
within a Project can be seen.

A limitation of this version control system is that it does not
support simultaneous collaboration.

4.3.2. Audio data

It was decided to store audio data on the disc because large bi-
nary objects (BLObs) are not particularly useful in databases.
The essential operations which databases can accomplish are
meaningless with this sort of data. On the other hand, having
access to the files meant that they were available without having
to go through a database. This was an important feature when
it came to writing scripts to convert audio data from different
bit-rates and formats.

For consistency, audio quality in Mixa has been set to be
16-bit, stereo, at 44100kHz. There are currently three different

Project

)

Figure 7: A tree of versions stored within a project

audio formats that Mixa makes use of.

WAV is the name given to uncompressed raw audio data. It
is of full quality, but it also has the drawback of being extremely
large.

The Free Lossless Audio Codec (FLAC) is high-quality au-
dio format that is reasonably compressed. In addition, audio
converted to FLAC remains at full quality.

OGG Vorbis is a lossy compression system which achieves
smaller files than FLAC, at the expense of some sound quality.
However, studies have shown that in practice, Vorbis is percep-
tibly different from lossless audio to only a minority of people
[13].

The initial design called for the system to use only FLAC
and Vorbis. However, due to time constraints the use of WAV
files were not completely eradicated. WAV is used in uploads
of recorded clips from the client machine, and in audio storage
and processing on the server. In fact, currently audio is stored
in all three formats on the server. This is a liability because the
size of WAV files. An ideal solution would use a Java FLAC
library to compress the audio within the recording applet before
uploading recordings, store the audio as FLAC, and convert to
OGG intelligently on demand.

The reason a more popular format such as MP3 was not
used was because of the licensing issues involved with apply-
ing MP3. The MP3 format is patented by the Moving Picture
Experts Group, and access to encoders is restricted. Using free
formats such as Vorbis and FLAC sidesteps this restriction en-
tirely.

5. Evaluation

5.1. Comprehensive evaluation

A comprehensive evaluation of the system would involve a live
user base and a trial lasting a long period of time. This would be

the best way to gauge whether the design of the web application
is effective, and if the quality of music composition is being
increased.

Due to the limitations of this project, such an evaluation
was not feasible. It needs to be addressed in future work.

5.2. Limitations

At the conclusion of the project, there are a number of limita-
tions and bugs that still exist.

The application works correctly only within Firefox or Sa-
fari. On Internet Explorer 8, the application works so poorly
as to be deemed incompatible. This behaviour is understand-
able when the major compatibility errors between browsers is
considered. However, this conflicts with the motivations of the
project which state that a web application is browser indepen-
dent.

Another limitation of this project is that the clean and open
API intended to encourage other developers to utilise Mixa in
their mash-ups has not yet been developed. The Mixa API has
grown in an ad-hoc fashion as deadlines approached, and while
it is mostly consistent, it is possibly not complete.

5.3. User study

An informal user study motivated by the need for a demon-
stration of this project’s feasibility was performed. Another
motivating reason for this study was preparation for the final
year project exhibition, when live crowds will interact with the
project. The study was performed on the largest client-side
module, the composer.

Improvements suggested by this study will be implemented
in the final exhibition, if they are sufficiently easy. This study
also highlighted those features which users found most attrac-
tive. The study provided the knowledge needed to tune existing
features and highlight enjoyable ones. In this way the study has
helped to improve the overall quality of Mixa’s exhibition.

Results of the study were generally positive. Every subject
found composing to be enjoyable, and reacted positively to the
tasks set. The interface was considered to be quite intuitive and
easy-to-grasp.

Problems identified were subjects trying to specify actions
which the module did not support, such as dragging out of win-
dow to scroll and double-clicking to seek to. Some subjects also
found the interface to be inconsistent. The invisibility of system
state in a few situations was identified as a problem, with the
subject having no idea what was going on.

For more information, please see appendix I.

6. Conclusion

The Mixa Web application represents a successful implemen-
tation of a prototype collaborative composition environment.
Contending against technical challenges, it integrates many dif-
ferent technologies together to deliver the functionality required
of it.

A limited study Collaborative composition has been shown
to be enjoyable.

More work needs to be done to demonstrate that Mixa ac-
tually improves the quality of music composed collaboratively.

There is great potential for future work left in this project.

6.1. Future work

At the conclusion of this project, there are a number of different
ways in which Mixa can continue to be extended.

The evaluation performed on this project was limited. A
more comprehensive evaluation would illuminate the status of
the Mixa application and would be instrumental in determining
how well Mixa supports the aims it espoused.

There is a lot of scope for major improvements to be made
to the user interface. These improvement would focus in two
major areas: usability and performance. Site design was kept
minimalistic to facilitate easy development, and a number of
components would benefit from better design to make them
more intuitive, efficient and effective. Performance improve-
ments are also possible within the applet and composer.

Scalability is a challenge that is extremely likely to arise if
this web application experiences significant growth. The initial
prototype implementation was not expected to have a high de-
gree of scalability. Scalability is an important feature motivated
by the fact that resources at this point are not sufficient to build
the system as big as eventual demand might require. Scalability
is a need which remains to be addressed in future work.

Security is another area where the service could be im-
proved. One especial limitation of the application is its weak-
ness to denial of service attacks by spamming high-cost opera-
tions such as rendering.

The usefulness of this web application could be improved
by adapting it to work with other music composition applica-
tions. This is a natural next step which will allow users who are
already familiar with their favourite composing software to use
Mixa easily.

7. Acknowledgments

I take this opportunity to acknowledge Joseph Maxwell Hobbs
for the work he has put into making this project a success. The
images used in figures 4 and 5 in this report were designed in
collaboration with Joseph.

I also acknowledge Professor Gill Dobbie of the Depart-
ment of Computer Science at the University of Auckland for
her extensive support and guidance during this project. Thanks
are due to Associate Professor John Morris, also of the Depart-
ment of Computer Science at the University of Auckland.

Further thanks are due to John Trengrove, for introducing
me to Django, and to Chris Haden for the use of his server.

8. References

[1] I. D. Corporation, “Idc finds more of the world’s
population connecting to the internet in new ways
and embracing web 2.0 activities,” June 2008. [On-
line]. Available: http://www.idc.com/getdoc.jsp? con-
tainerld=prUS21303808

[2] T. V. Raman, “Toward 2w, beyond web 2.0,” Commun.
ACM, vol. 52, no. 2, pp. 52-59, 2009.

[3] R. Reinhardt, “Building communities with rich internet
applications,” in SIGGRAPH ’03: ACM SIGGRAPH 2003
Web Graphics. New York, NY, USA: ACM, 2003, pp.
1-1.

[4] D. E. Millard and M. Ross, “Web 2.0: hypertext by
any other name?” in HYPERTEXT ’06: Proceedings of
the seventeenth conference on Hypertext and hypermedia.
New York, NY, USA: ACM, 2006, pp. 27-30.

(3]

[6

—_

(7]

[8

—_—

(9]

(10]

(11]

[12]

(13]

C. Ullrich, K. Borau, H. Luo, X. Tan, L. Shen,
and R. Shen, “Why web 2.0 is good for learning
and for research: principles and prototypes,” in
WWW °08: Proceeding of the 17th international
conference on World Wide Web. New York, NY,
USA: ACM, 2008, pp. 705-714. [Online]. Available:
http://dx.doi.org/10.1145/1367497.1367593

A. Tanaka, “Malleable mobile music,” in Adjunct Proc. of
Ubicomp, 2004.

“Hobnox - audiotool,” http://www.hobnox.com/ au-
diotool.1046.en.html, Hobnox, May 2009.

“Aviary - phoenix,” http://aviary.com/tools/phoenix,
Aviary, May 2009.

S. Jord and O. Wst, “A system for collaborative music
composition over the web.”

J. Chaffer and K. Swedberg, “Learning jquery: bet-
ter interaction design and web development with simple
javascript techniques,” 2007.

G. Lindstrom, “Programming with python,” IT Profes-
sional, vol. 7, no. 5, pp. 10-16, Sept.-Oct. 2005.

D. Documentation, “Django: Python Web Frame-
work,[Online], Django Software Foundation,” 2005.

J. Moffitt, “Ogg vorbis—open, free audio—set your media
free,” Linux J., p. 9.

A. Plan for a Usability Study of the
Composer in Mixa

A.1. Motivation

An evaluation of Mixa is important for completeness. Perform-
ing such an evaluation will provide a better understanding of
the project’s characteristics, and inform presentations as well as
providing direction for future work.

The research project also involves an exhibition where the
application designed is demonstrated to the public. Improve-
ments suggested by this study will be implemented in the final
demo, if they are sufficiently easy. This study will also high-
light those features which are most attractive, which will then
lead to a more enjoyable presentation. In this way the study will
help improve the overall quality of the exhibition by providing
the knowledge needed to tune existing features and highlight
enjoyable ones.

A.2. Aims

The aim of this study is to serve as a form of evaluation of the
project with respect to the enjoyability of the experience of a ca-
sual user. The aim is also to elicit feedback about implemented
features and potential improvements.

A.3. User profile

The profile of subjects chosen for this study were restricted by
two constraints. On the one hand it was desirable to have test
subjects who are as similar to those expected on the exhibition
day. On the other, the potential pool of subjects within easy
access was limited.

Therefore, the profile of the user adopted by this study
called for a user in their late teens or early twenties. This sub-
ject would be familiar with music concepts and familiar with
computers. Users were selected of varying levels of musical
aptitude, to better match the exhibition day crowds.

A.4. Methodology

The methodology adopted was a guided path through the tasks
of the study. These tasks provide a way to introduce the subject
to features of the system, and are not timed for efficiency. Per-
ceived hardness of tasks is of greater importance to this study
than actual time spent.

AA4.1. Script

1. Introduction Greet the subject. Welcome them to the
test environment. Tell them our names. Make them feel
welcome.

2. Description of the system Introduce the system to the
subject, and tell them about its motivation, aims and fea-
tures.

3. Test paperwork Request the subject sign the
waiver/questionnaire.

4. Tasks Proceed through the tasks at a pace the subject
is comfortable with. At this point observations of the
subject behaviour will be noted.

5. Interview

A.4.2. Test environment

Due to the loud nature of the tasks that involve the composition
of music, the tests will need to be completed in a room with

restricted access and sound controls. This introduces a limita-
tion as the project exhibition environment is likely to be noisy,
which will have a significant impact on the usability of the sys-
tem. Attempting to run a test in a noisy environment, however,
is not feasible at this point.

Sufficient lighting will be made available to ensure the sub-
ject can see the screen, and they will be comfortably seated.

A.4.3. User tasks

The tasks were presented as a series of suggestion to the subject
to provide them with a path through the features of the program.

Log in

Browse projects
Branch a version
Edit a version
Delete a clip
Add a new clip
Duplicate a clip

Edit the version until satisfied

e e BN e

Save the version

A.4.4. Questionnaire

After the subject has completed all the tasks and is
finished playing with the system, the user was pre-
sented with the questionnaire available on-line at
http://spreadsheets.google.com/viewform?

formkey=dHo3bnlUWD1iVmVPTGRDN1dgROVPMEEG6MA. .

A.4.5. Results

Results of the study were generally positive. Every subject
found composing to be enjoyable, and reacted positively to the
tasks set. The interface was considered to be quite intuitive and
easy-to-grasp.

Problems identified were subjects trying to specify actions
which the module did not support, such as dragging out of win-
dow to scroll and double-clicking to seek to a location. Some
subjects also found the interface to be inconsistent in places.
The invisibility of system state in a few situations was identi-
fied as a problem, with the subject having no idea what was
going on. One example was when the entire module was load-
ing, there was a complete lack of feedback to the user, leading
to most of them wondering if it had crashed.

Common suggestions for improvements included preview-
ing sounds before adding to project, allowing for negative selec-
tions of clips, and displaying some form of timing indication.

A.4.6. Conclusion

The major trend of results is positive. This is an extremely
promising result, and does show that the composer is an effec-
tive prototype.

However, users were able to also identify those features
which were counter-intuitive. A number of minor improve-
ments can be made within the system.

